Episodes

  • Enhancing AI Retrieval with Knowledge Graphs: A Deep Dive into GraphRAG
    Sep 10 2024
    SummaryIn this episode of the AI Engineering podcast, Philip Rathle, CTO of Neo4J, talks about the intersection of knowledge graphs and AI retrieval systems, specifically Retrieval Augmented Generation (RAG). He delves into GraphRAG, a novel approach that combines knowledge graphs with vector-based similarity search to enhance generative AI models. Philip explains how GraphRAG works by integrating a graph database for structured data storage, providing more accurate and explainable AI responses, and addressing limitations of traditional retrieval systems. The conversation covers technical aspects such as data modeling, entity extraction, and ontology use cases, as well as the infrastructure and workflow required to support GraphRAG, setting the stage for innovative applications across various industries.AnnouncementsHello and welcome to the AI Engineering Podcast, your guide to the fast-moving world of building scalable and maintainable AI systemsYour host is Tobias Macey and today I'm interviewing Philip Rathle about the application of knowledge graphs in AI retrieval systemsInterviewIntroductionHow did you get involved in machine learning?Can you describe what GraphRAG is?What are the capabilities that graph structures offer beyond vector/similarity-based retrieval methods of prompting?What are some examples of the ways that semantic limitations of nearest-neighbor vector retrieval fail to provide relevant results?What are the technical requirements to implement graph-augmented retrieval?What are the concrete ways in which the embedding and retrieval steps of a typical RAG pipeline need to be modified to account for the addition of the graph?Many tutorials for building vector-based knowledge repositories skip over considerations around data modeling. For building a graph-based knowledge repository there obviously needs to be a bit more work put in. What are the key design choices that need to be made for implementing the graph for an AI application?How does the selection of the ontology/taxonomy impact the performance and capabilities of the resulting application?Building a fully functional knowledge graph can be a significant undertaking on its own. How can LLMs and AI models help with the construction and maintenance of that knowledge repository?What are some of the validation methods that should be brought to bear to ensure that the resulting graph properly represents the knowledge domain that you are trying to model?Vector embedding and retrieval are a core building block for a majority of AI application frameworks. How much support do you see for GraphRAG in the ecosystem?For the case where someone is using a framework that does not explicitly implement GraphRAG techniques, what are some of the implementation strategies that you have seen be most effective for adding that functionality?What are some of the ways that the combination of vector search and knowledge graphs are useful independent of their combination with language models?What are the most interesting, innovative, or unexpected ways that you have seen GraphRAG used?What are the most interesting, unexpected, or challenging lessons that you have learned while working on GraphRAG applications?When is GraphRAG the wrong choice?What are the opportunities for improvement in the design and implementation of graph-based retrieval systems?Contact InfoLinkedInParting QuestionFrom your perspective, what are the biggest gaps in tooling, technology, or training for AI systems today?Closing AnnouncementsThank you for listening! Don't forget to check out our other shows. The Data Engineering Podcast covers the latest on modern data management. Podcast.__init__ covers the Python language, its community, and the innovative ways it is being used.Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.If you've learned something or tried out a project from the show then tell us about it! Email hosts@aiengineeringpodcast.com with your story.To help other people find the show please leave a review on iTunes and tell your friends and co-workers.LinksNeo4JGraphRAG ManifestoRAG == Retrieval Augmented GenerationPodcast EpisodeVLDB == Very Large DataBasesKnowledge GraphNearest Neighbor SearchPageRankThings Not Strings) Google Knowledge Graph PaperpgvectorPineconeData Engineering Podcast EpisodeTables To LabelsNLP == Natural Language ProcessingOntologyLangChainLlamaIndexRLHF == Reinforcement Learning with Human FeedbackSenzingNeoConverseCypher query languageGQL query standardAWS BedrockVertex AISequoia Training Data - Klarna episodeOuroborosThe intro and outro music is from Hitman's Lovesong feat. Paola Graziano by The Freak Fandango Orchestra/CC BY-SA 3.0
    Show more Show less
    59 mins
  • Harnessing Generative AI for Effective Digital Advertising Campaigns
    Sep 2 2024
    SummaryIn this episode of the AI Engineering podcast Praveen Gujar, Director of Product at LinkedIn, talks about the applications of generative AI in digital advertising. He highlights the key areas of digital advertising, including audience targeting, content creation, and ROI measurement, and delves into how generative AI is revolutionizing these aspects. Praveen shares successful case studies of generative AI in digital advertising, including campaigns by Heinz, the Barbie movie, and Maggi, and discusses the potential pitfalls and risks associated with AI-powered tools. He concludes with insights into the future of generative AI in digital advertising, highlighting the importance of cultural transformation and the synergy between human creativity and AI.AnnouncementsHello and welcome to the AI Engineering Podcast, your guide to the fast-moving world of building scalable and maintainable AI systemsYour host is Tobias Macey and today I'm interviewing Praveen Gujar about the applications of generative AI in digital advertisingInterviewIntroductionHow did you get involved in machine learning?Can you start by defining "digital advertising" for the scope of this conversation?What are the key elements/characteristics/goals of digital avertising?In the world before generative AI, what did a typical end-to-end advertising campaign workflow look like?What are the stages of that workflow where generative AI are proving to be most useful?How do the current limitations of generative AI (e.g. hallucinations, non-determinism) impact the ways in which they can be used?What are the technological and organizational systems that need to be implemented to effectively apply generative AI in public-facing applications that are so closely tied to brand/company image?What are the elements of user education/expectation setting that are necessary when working with marketing/advertising personnel to help avoid damage to the brands?What are some examples of applications for generative AI in digital advertising that have gone well?Any that have gone wrong?What are the most interesting, innovative, or unexpected ways that you have seen generative AI used in digital advertising?What are the most interesting, unexpected, or challenging lessons that you have learned while working on digital advertising applications of generative AI?When is generative AI the wrong choice?What are your future predictions for the use of generative AI in dgital advertising?Contact InfoWebsiteLinkedInParting QuestionFrom your perspective, what is the biggest barrier to adoption of machine learning today?Closing AnnouncementsThank you for listening! Don't forget to check out our other shows. The Data Engineering Podcast covers the latest on modern data management. Podcast.__init__ covers the Python language, its community, and the innovative ways it is being used.Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.If you've learned something or tried out a project from the show then tell us about it! Email hosts@aiengineeringpodcast.com with your story.To help other people find the show please leave a review on iTunes and tell your friends and co-workers.LinksGenerative AILLM == Large Language ModelDall-E)RLHF == Reinforcement Learning fHuman FeedbackThe intro and outro music is from Hitman's Lovesong feat. Paola Graziano by The Freak Fandango Orchestra/CC BY-SA 3.0
    Show more Show less
    42 mins
  • Building Scalable ML Systems on Kubernetes
    Aug 15 2024
    SummaryIn this episode of the AI Engineering podcast, host Tobias Macy interviews Tammer Saleh, founder of SuperOrbital, about the potentials and pitfalls of using Kubernetes for machine learning workloads. The conversation delves into the specific needs of machine learning workflows, such as model tracking, versioning, and the use of Jupyter Notebooks, and how Kubernetes can support these tasks. Tammer emphasizes the importance of a unified API for different teams and the flexibility Kubernetes provides in handling various workloads. Finally, Tammer offers advice for teams considering Kubernetes for their machine learning workloads and discusses the future of Kubernetes in the ML ecosystem, including areas for improvement and innovation.AnnouncementsHello and welcome to the AI Engineering Podcast, your guide to the fast-moving world of building scalable and maintainable AI systemsYour host is Tobias Macey and today I'm interviewing Tammer Saleh about the potentials and pitfalls of using Kubernetes for your ML workloads.InterviewIntroductionHow did you get involved in Kubernetes?For someone who is unfamiliar with Kubernetes, how would you summarize it?For the context of this conversation, can you describe the different phases of ML that we're talking about?Kubernetes was originally designed to handle scaling and distribution of stateless processes. ML is an inherently stateful problem domain. What challenges does that add for K8s environments?What are the elements of an ML workflow that lend themselves well to a Kubernetes environment?How much Kubernetes knowledge does an ML/data engineer need to know to get their work done?What are the sharp edges of Kubernetes in the context of ML projects?What are the most interesting, unexpected, or challenging lessons that you have learned while working with Kubernetes?When is Kubernetes the wrong choice for ML?What are the aspects of Kubernetes (core or the ecosystem) that you are keeping an eye on which will help improve its utility for ML workloads?Contact InfoEmailLinkedInParting QuestionFrom your perspective, what is the biggest gap in the tooling or technology for ML workloads today?LinksSuperOrbitalCloudFoundryHeroku12 Factor ModelKubernetesDocker ComposeCore K8s ClassJupyter NotebookCrossplaneOchre JellyCNCF (Cloud Native Computing Foundation) LandscapeStateful SetRAG == Retrieval Augmented GenerationPodcast EpisodeKubeflowFlyteData Engineering Podcast EpisodePachydermData Engineering Podcast EpisodeCoreWeaveKubectl ("koob-cuddle")HelmCRD == Custom Resource DefinitionHorovodPodcast.__init__ EpisodeTemporalSlurmRayDaskInfinibandThe intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA
    Show more Show less
    50 mins
  • Expert Insights On Retrieval Augmented Generation And How To Build It
    Jul 28 2024
    SummaryIn this episode we're joined by Matt Zeiler, founder and CEO of Clarifai, as he dives into the technical aspects of retrieval augmented generation (RAG). From his journey into AI at the University of Toronto to founding one of the first deep learning AI companies, Matt shares his insights on the evolution of neural networks and generative models over the last 15 years. He explains how RAG addresses issues with large language models, including data staleness and hallucinations, by providing dynamic access to information through vector databases and embedding models. Throughout the conversation, Matt and host Tobias Macy discuss everything from architectural requirements to operational considerations, as well as the practical applications of RAG in industries like intelligence, healthcare, and finance. Tune in for a comprehensive look at RAG and its future trends in AI.AnnouncementsHello and welcome to the AI Engineering Podcast, your guide to the fast-moving world of building scalable and maintainable AI systemsYour host is Tobias Macey and today I'm interviewing Matt Zeiler, Founder & CEO of Clarifai, about the technical aspects of RAG, including the architectural requirements, edge cases, and evolutionary characteristicsInterviewIntroductionHow did you get involved in the area of data management?Can you describe what RAG (Retrieval Augmented Generation) is?What are the contexts in which you would want to use RAG?What are the alternatives to RAG?What are the architectural/technical components that are required for production grade RAG?Getting a quick proof-of-concept working for RAG is fairly straightforward. What are the failures modes/edge cases that start to surface as you scale the usage and complexity?The first step of building the corpus for RAG is to generate the embeddings. Can you talk through the planning and design process? (e.g. model selection for embeddings, storage capacity/latency, etc.)How does the modality of the input/output affect this and downstream decisions? (e.g. text vs. image vs. audio, etc.)What are the features of a vector store that are most critical for RAG?The set of available generative models is expanding and changing at breakneck speed. What are the foundational aspects that you look for in selecting which model(s) to use for the output?Vector databases have been gaining ground for search functionality, even without generative AI. What are some of the other ways that elements of RAG can be re-purposed?What are the most interesting, innovative, or unexpected ways that you have seen RAG used?What are the most interesting, unexpected, or challenging lessons that you have learned while working on RAG?When is RAG the wrong choice?What are the main trends that you are following for RAG and its component elements going forward?Contact InfoWebsiteLinkedInParting QuestionFrom your perspective, what is the biggest barrier to adoption of machine learning today?Closing AnnouncementsThank you for listening! Don't forget to check out our other shows. The Data Engineering Podcast covers the latest on modern data management. [Podcast.__init__]() covers the Python language, its community, and the innovative ways it is being used.Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.If you've learned something or tried out a project from the show then tell us about it! Email hosts@aiengineeringpodcast.com with your story.To help other people find the show please leave a review on iTunes and tell your friends and co-workers.LinksClarifaiGeoff HintonYann LecunNeural NetworksDeep LearningRetrieval Augmented GenerationContext WindowVector DatabasePrompt EngineeringMistralLlama 3Embedding QuantizationActive LearningGoogle GeminiAI Model AttentionRecurrent NetworkConvolutional NetworkReranking ModelStop WordsMassive Text Embedding Benchmark (MTEB)Retool State of AI ReportpgvectorMilvusQdrantPineconeOpenLLM LeaderboardSemantic SearchHashicorpThe intro and outro music is from Hitman's Lovesong feat. Paola Graziano by The Freak Fandango Orchestra/CC BY-SA 3.0
    Show more Show less
    1 hr and 3 mins
  • Barking Up The Wrong GPTree: Building Better AI With A Cognitive Approach
    Jul 28 2024
    SummaryArtificial intelligence has dominated the headlines for several months due to the successes of large language models. This has prompted numerous debates about the possibility of, and timeline for, artificial general intelligence (AGI). Peter Voss has dedicated decades of his life to the pursuit of truly intelligent software through the approach of cognitive AI. In this episode he explains his approach to building AI in a more human-like fashion and the emphasis on learning rather than statistical prediction.AnnouncementsHello and welcome to the AI Engineering Podcast, your guide to the fast-moving world of building scalable and maintainable AI systemsYour host is Tobias Macey and today I'm interviewing Peter Voss about what is involved in making your AI applications more "human"InterviewIntroductionHow did you get involved in machine learning?Can you start by unpacking the idea of "human-like" AI?How does that contrast with the conception of "AGI"?The applications and limitations of GPT/LLM models have been dominating the popular conversation around AI. How do you see that impacting the overrall ecosystem of ML/AI applications and investment?The fundamental/foundational challenge of every AI use case is sourcing appropriate data. What are the strategies that you have found useful to acquire, evaluate, and prepare data at an appropriate scale to build high quality models? What are the opportunities and limitations of causal modeling techniques for generalized AI models?As AI systems gain more sophistication there is a challenge with establishing and maintaining trust. What are the risks involved in deploying more human-level AI systems and monitoring their reliability?What are the practical/architectural methods necessary to build more cognitive AI systems?How would you characterize the ecosystem of tools/frameworks available for creating, evolving, and maintaining these applications?What are the most interesting, innovative, or unexpected ways that you have seen cognitive AI applied?What are the most interesting, unexpected, or challenging lessons that you have learned while working on desiging/developing cognitive AI systems?When is cognitive AI the wrong choice?What do you have planned for the future of cognitive AI applications at Aigo?Contact InfoLinkedInWebsiteParting QuestionFrom your perspective, what is the biggest barrier to adoption of machine learning today?Closing AnnouncementsThank you for listening! Don't forget to check out our other shows. The Data Engineering Podcast covers the latest on modern data management. Podcast.__init__ covers the Python language, its community, and the innovative ways it is being used.Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.If you've learned something or tried out a project from the show then tell us about it! Email hosts@aiengineeringpodcast.com with your story.To help other people find the show please leave a review on iTunes and tell your friends and co-workers.LinksAigo.aiArtificial General IntelligenceCognitive AIKnowledge GraphCausal ModelingBayesian StatisticsThinking Fast & Slow by Daniel Kahneman (affiliate link)Agent-Based ModelingReinforcement LearningDARPA 3 Waves of AI presentationWhy Don't We Have AGI Yet? whitepaperConcepts Is All You Need WhitepaperHellen KellerStephen HawkingThe intro and outro music is from Hitman's Lovesong feat. Paola Graziano by The Freak Fandango Orchestra/CC BY-SA 3.0
    Show more Show less
    53 mins
  • Build Your Second Brain One Piece At A Time
    Jul 28 2024
    SummaryGenerative AI promises to accelerate the productivity of human collaborators. Currently the primary way of working with these tools is through a conversational prompt, which is often cumbersome and unwieldy. In order to simplify the integration of AI capabilities into developer workflows Tsavo Knott helped create Pieces, a powerful collection of tools that complements the tools that developers already use. In this episode he explains the data collection and preparation process, the collection of model types and sizes that work together to power the experience, and how to incorporate it into your workflow to act as a second brain.AnnouncementsHello and welcome to the AI Engineering Podcast, your guide to the fast-moving world of building scalable and maintainable AI systemsYour host is Tobias Macey and today I'm interviewing Tsavo Knott about Pieces, a personal AI toolkit to improve the efficiency of developersInterviewIntroductionHow did you get involved in machine learning?Can you describe what Pieces is and the story behind it?The past few months have seen an endless series of personalized AI tools launched. What are the features and focus of Pieces that might encourage someone to use it over the alternatives?model selectionsarchitecture of Pieces applicationlocal vs. hybrid vs. online modelsmodel update/delivery processdata preparation/serving for models in context of Pieces appapplication of AI to developer workflowstypes of workflows that people are building with piecesWhat are the most interesting, innovative, or unexpected ways that you have seen Pieces used?What are the most interesting, unexpected, or challenging lessons that you have learned while working on Pieces?When is Pieces the wrong choice?What do you have planned for the future of Pieces?Contact InfoLinkedInParting QuestionFrom your perspective, what is the biggest barrier to adoption of machine learning today?Closing AnnouncementsThank you for listening! Don't forget to check out our other shows. The Data Engineering Podcast covers the latest on modern data management. Podcast.__init__ covers the Python language, its community, and the innovative ways it is being used.Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.If you've learned something or tried out a project from the show then tell us about it! Email hosts@aiengineeringpodcast.com with your story.To help other people find the show please leave a review on iTunes and tell your friends and co-workers.LinksPiecesNPU == Neural Processing UnitTensor ChipLoRA == Low Rank AdaptationGenerative Adversarial NetworksMistralEmacsVimNeoVimDartFlutterTypescriptLuaRetrieval Augmented GenerationONNXLSTM == Long Short-Term MemoryLLama 2GitHub CopilotTabninePodcast EpisodeThe intro and outro music is from Hitman's Lovesong feat. Paola Graziano by The Freak Fandango Orchestra/CC BY-SA 3.0
    Show more Show less
    48 mins
  • Strategies For Building A Product Using LLMs At DataChat
    Mar 3 2024
    SummaryLarge Language Models (LLMs) have rapidly captured the attention of the world with their impressive capabilities. Unfortunately, they are often unpredictable and unreliable. This makes building a product based on their capabilities a unique challenge. Jignesh Patel is building DataChat to bring the capabilities of LLMs to organizational analytics, allowing anyone to have conversations with their business data. In this episode he shares the methods that he is using to build a product on top of this constantly shifting set of technologies.AnnouncementsHello and welcome to the Machine Learning Podcast, the podcast about machine learning and how to bring it from idea to delivery.Your host is Tobias Macey and today I'm interviewing Jignesh Patel about working with LLMs; understanding how they work and how to build your ownInterviewIntroductionHow did you get involved in machine learning?Can you start by sharing some of the ways that you are working with LLMs currently?What are the business challenges involved in building a product on top of an LLM model that you don't own or control? In the current age of business, your data is often your strategic advantage. How do you avoid losing control of, or leaking that data while interfacing with a hosted LLM API?What are the technical difficulties related to using an LLM as a core element of a product when they are largely a black box? What are some strategies for gaining visibility into the inner workings or decision making rules for these models?What are the factors, whether technical or organizational, that might motivate you to build your own LLM for a business or product? Can you unpack what it means to "build your own" when it comes to an LLM?In your work at DataChat, how has the progression of sophistication in LLM technology impacted your own product strategy?What are the most interesting, innovative, or unexpected ways that you have seen LLMs/DataChat used?What are the most interesting, unexpected, or challenging lessons that you have learned while working with LLMs?When is an LLM the wrong choice?What do you have planned for the future of DataChat?Contact InfoWebsiteLinkedInParting QuestionFrom your perspective, what is the biggest barrier to adoption of machine learning today?Closing AnnouncementsThank you for listening! Don't forget to check out our other shows. The Data Engineering Podcast covers the latest on modern data management. Podcast.__init__ covers the Python language, its community, and the innovative ways it is being used.Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.If you've learned something or tried out a project from the show then tell us about it! Email hosts@themachinelearningpodcast.com) with your story.To help other people find the show please leave a review on iTunes and tell your friends and co-workers.LinksDataChatCMU == Carnegie Mellon UniversitySVM == Support Vector MachineGenerative AIGenomicsProteomicsParquetOpenAI CodexLLamaMistralGoogle VertexLangchainRetrieval Augmented GenerationPrompt EngineeringEnsemble LearningXGBoostCatboostLinear RegressionCOGS == Cost Of Goods SoldBruce Schneier - AI And TrustThe intro and outro music is from Hitman's Lovesong feat. Paola Graziano by The Freak Fandango Orchestra/CC BY-SA 3.0
    Show more Show less
    49 mins
  • Improve The Success Rate Of Your Machine Learning Projects With bizML
    Feb 18 2024
    SummaryMachine learning is a powerful set of technologies, holding the potential to dramatically transform businesses across industries. Unfortunately, the implementation of ML projects often fail to achieve their intended goals. This failure is due to a lack of collaboration and investment across technological and organizational boundaries. To help improve the success rate of machine learning projects Eric Siegel developed the six step bizML framework, outlining the process to ensure that everyone understands the whole process of ML deployment. In this episode he shares the principles and promise of that framework and his motivation for encapsulating it in his book "The AI Playbook".AnnouncementsHello and welcome to the Machine Learning Podcast, the podcast about machine learning and how to bring it from idea to delivery.Your host is Tobias Macey and today I'm interviewing Eric Siegel about how the bizML approach can help improve the success rate of your ML projectsInterviewIntroductionHow did you get involved in machine learning?Can you describe what bizML is and the story behind it? What are the key aspects of this approach that are different from the "industry standard" lifecycle of an ML project?What are the elements of your personal experience as an ML consultant that helped you develop the tenets of bizML?Who are the personas that need to be involved in an ML project to increase the likelihood of success? Who do you find to be best suited to "own" or "lead" the process?What are the organizational patterns that might hinder the work of delivering on the goals of an ML initiative?What are some of the misconceptions about the work involved in/capabilities of an ML model that you commonly encounter?What is your main goal in writing your book "The AI Playbook"?What are the most interesting, innovative, or unexpected ways that you have seen the bizML process in action?What are the most interesting, unexpected, or challenging lessons that you have learned while working on ML projects and developing the bizML framework?When is bizML the wrong choice?What are the future developments in organizational and technical approaches to ML that will improve the success rate of AI projects?Contact InfoLinkedInParting QuestionFrom your perspective, what is the biggest barrier to adoption of machine learning today?Closing AnnouncementsThank you for listening! Don't forget to check out our other shows. The Data Engineering Podcast covers the latest on modern data management. Podcast.__init__ covers the Python language, its community, and the innovative ways it is being used.Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.If you've learned something or tried out a project from the show then tell us about it! Email hosts@themachinelearningpodcast.com) with your story.To help other people find the show please leave a review on iTunes and tell your friends and co-workers.LinksThe AI Playbook: Mastering the Rare Art of Machine Learning Deployment by Eric SiegelPredictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die by Eric SiegelColumbia UniversityMachine Learning Week ConferenceGenerative AI WorldMachine Learning Leadership and Practice CourseRexer AnalyticsKD NuggetsCRISP-DMRandom ForestGradient DescentThe intro and outro music is from Hitman's Lovesong feat. Paola Graziano by The Freak Fandango Orchestra/CC BY-SA 3.0
    Show more Show less
    50 mins