Real Science Exchange

By: Balchem Animal Nutrition & Health
  • Summary

  • Balchem Real Science Exchange isn’t just any old boring podcast. You’ll get to know top researchers like you’ve never known them before. Go behind the scenes and hear the conversations that take place over a few drinks with friends. Join us as we discuss the hot topics in animal science and share a range of new ideas.
    2020 Balchem Animal Nutrition & Health
    Show more Show less
activate_Holiday_promo_in_buybox_DT_T2
Episodes
  • ADSA Industry of Interest Research, Part Two
    Nov 26 2024

    In part two of a two-part series, the Balchem technical team selected industry research of interest from the 2024 American Dairy Science Association meetings to feature on this episode of the Real Science Exchange.

    Smart Cows, Smart Farms: Unleashing the Potential of Artificial Intelligence in the Dairy Sector

    Guest: Dr. Jeffrey Bewley, Holstein Association USA (1:58)

    Dr. Bewley is the Dairy Analytics and Innovation Scientist at Holstein Association USA, where part of his role is collaborating with Western Kentucky University at the WKU Smart Holstein Lab. The group works with more than 30 technologies, including wearable, camera and machine vision, milk analysis, and automation technologies. At ADSA, Dr. Bewley’s presentation was part of a symposium titled “Applications of AI to Dairy Systems.” His talk focused on cow- and farm-level technologies using artificial intelligence. He anticipates a continued massive increase in the availability of technologies for dairy farms to assist with automating processes that are often monotonous tasks. One example of this is the wearable accelerometer technologies that allow for the assessment of estrous behavior, as well as rumination and eating behavior. In the future, camera-based technologies may become more commonplace for things like body condition scoring. Cameras may also be able to monitor rumination and eating behavior, and even perhaps dry matter intake. Dr. Bewley also sees an opportunity on the milk analysis side to be able to measure even more biomarkers to better manage for improved health, reproduction, and well-being. He reminds listeners that animal husbandry will continue to be a critical piece of dairy farming even with advancing technology. He gives examples of current and cutting-edge technologies on the horizon for dairy farms. On his wish list of technologies for the future, he includes dry matter intake measurement and inline measurement of somatic cell count, hormones, and metabolites in the milk. In closing, Dr. Bewley encourages listeners to be excited yet cautious about artificial intelligence and gives examples of how technology can collect phenotypic data to use in genetic evaluation.

    Explaining the Five Domains and Using Behavioral Measures in Commercial Systems

    Guest: Dr. Temple Grandin, Colorado State University (26:48)

    Dr. Grandin’s presentation was also part of a symposium, titled “The Animal Behavior and Wealthbeing Symposia: Evaluating Animal Comfort and Wellbeing Using the Five Domains.” The five domains approach is gaining popularity. Previous guidance documents emphasized preventing suffering, cruelty, and discomfort. The five domains are nutrition, environment, health, behavior interactions, and the emotional state of the animal. Much of the information available is very theoretical. Dr. Grandin’s goal for this presentation was to gather easy-to-download scoring tools to assist in auditing the five domains in the field. She emphasizes the importance of good stockmanship for animal well-being and cautions that while artificial intelligence technologies can be used to assess the five domains, good stockmanship will always be necessary. Dr. Grandin recommends a three-legged audit: internal, independent third-party, and corporate representatives. She cautions against farming all audits out to a third party and anticipates that it has the potential to cause major supply chain disruptions. Lastly, Dr. Grandin recommends simple yet effective outcome measures for audits that can be taught in a short training session that includes practice audits.

    View her five domains paper here: https://pubmed.ncbi.nlm.nih.gov/36290216/

    Please subscribe and share with your industry friends to invite more people to join us at the Real Science Exchange virtual pub table.

    If you want one of our Real Science Exchange t-shirts, screenshot your rating, review, or subscription, and email a picture to anh.marketing@balchem.com. Include your size and mailing address, and we’ll mail you a shirt.

    Show more Show less
    43 mins
  • Who Let The Dogma Out Of Transition Cow Management? Dr. Lance Baumgard, Iowa State University
    Nov 19 2024

    Nutritionists are often blamed for transition cow problems like high NEFAs, clinical and subclinical ketosis, and subclinical hypocalcemia. Dr. Baumgard suggests these symptoms are a result of one of two situations: 1. These are highly productive, healthy, and profitable cows; or 2. The symptoms are the metabolic reflection of immune activation, likely stemming from metritis, mastitis, pneumonia, or GI tract inflammation. In the first scenario, the nutritionist deserves a raise; in the second, these are mostly management issues not caused by nutrition. (1:26)

    If listeners are interested in more detail on this topic, Dr. Baumgard suggests reading this 2021 review in the Journal of Dairy Science: “ Invited review: The influence of immune activation on transition cow health and performance—A critical evaluation of traditional dogmas.”

    Link: https://www.sciencedirect.com/science/article/pii/S0022030221006329

    Dr. Baumgard highlights key concepts that underpin his thinking regarding transition cows: The best indicators of health are feed intake and milk yield, it’s too easy to overthink the immune system, Mother Nature is rarely wrong, and inconsistent or non-reproducible data should create doubt. He goes on to review the incidence of metabolic disorders in early lactation and the energy balance dynamics of the transition period. (4:29)

    For decades, we’ve had the assumption that NEFAs and ketones are causing many of the health issues in transition cows. NEFAs, BHBs, and calcium have been correlated and associated with negative outcomes. However many other studies do not find these negative correlations or associations. Plasma NEFA is markedly increased following calving in almost all cows, yet only 15-20% get clinical ketosis. Dr. Baumgard suggests that it’s presumptuous and reductionist of us to assume we can use one metabolite to diagnose the disease. Little mechanistic evidence exists to explain how these symptoms cause metabolic disease issues. (10:29)

    If hyperketonemia, high NEFA, and subclinical hypocalcemia are causing disease, then therapeutically treating these disorders would improve overall cow health. NAHMS data does not back that up. Dr. Baumgard dissects the dogma of ketosis. In short, mobilization of adipose tissues and partial conversion of NEFA to ketones is essential for maximum milk yield. (18:35)

    High-producing cows are more hypoinsulinemic compared to low-producing cows, and transition period insulin concentrations are inversely related to whole lactation performance. Low insulin concentrations coupled with insulin resistance allow for fat mobilization. (29:02)

    Post-calving inflammation occurs in all cows. Sources include the mammary gland, the uterus, and the gut. Severe inflammation precedes the clinical presentation of the disease. In one experiment, all cows exhibited some inflammation in very early lactation. However, cows that were culled or died before 100 days in milk were already severely inflamed during the first few days of lactation. Dr. Baumgard thinks inflammation is the simplest and most logical explanation for why some cows don't eat well before and after calving. (31:13)

    While clinical hypocalcemia (milk fever) is pathological and requires immediate intervention, is subclinical hypocalcemia detrimental to health, productivity, and profitability? (36:33)

    Dr. Baumgard’s paradigm-shifting concept suggests that increased NEFA and hyperketonemia are caused by immune activation-induced hypophagia, and hypocalcemia is a consequence of immune activation. He goes on to use a high-producing, a low-producing, and a sick cow to illustrate this concept. (43:26)

    In summary, the metabolic adjustments in minerals and energy during the transition period are not dysfunctional and don’t need to be “fixed.” The real fix is to prevent immune activation in the first place to prevent the cow from going off feed. Profitable production is a consequence of wellness. (52:19)

    Dr. Baumgard takes a series of engaging questions from the webinar audience. Watch the full webinar at balchem.com/realscience. (56:04)

    Please subscribe and share with your industry friends to invite more people to join us at the Real Science Exchange virtual pub table.

    If you want one of our Real Science Exchange t-shirts, screenshot your rating, review, or subscription, and email a picture to anh.marketing@balchem.com. Include your size and mailing address, and we’ll mail you a shirt.

    Show more Show less
    1 hr and 13 mins
  • ADSA University Research of Interest
    Nov 12 2024

    The Balchem technical team selected abstracts of interest from the 2024 American Dairy Science Association meetings to feature on this episode of the Real Science Exchange.

    Whole Cottonseed and Fatty Acid Supplementation Affect Production Responses During the Immediate Postpartum in Multiparous Dairy Cows

    Guests: Jair Parales-Giron and Dr. Adam Lock, Michigan State University (0:58)

    The experiment had four treatment groups: no fat supplement, 10% of the diet from whole cottonseed, a 60:30 mix of calcium salts of palmitic and oleic acid at 1.5% of the diet dry matter, and a combination of both whole cottonseed and fatty acid supplement. Energy-corrected milk was increased by almost six kilograms in cows fed the whole cottonseed diet, with a similar increase of more than five kilograms in the fatty acid-supplemented cows during the first 24 days of lactation. However, no further improvement was observed when both whole cottonseed and fatty acids were fed together. The increase in milk production was not accompanied by increased weight loss or loss of body condition.

    Effect of Close-Up Metabolizable Protein Supply on Colostrum Yield, Composition, and Immunoglobulin G Concentration

    Guests: Dr. Trent Westhoff and Dr. Sabine Mann, Cornell University (17:06)

    In this study, cows were assigned to one of two diets 28 days before expected calving: one that provided 39 grams of metabolizable protein (MP) per pound of dry matter and one that supplied 51 grams of MP per pound of dry matter. This represents about 100% of the MP requirement and 140% of the MP requirement, respectively. Diets were formulated to supply equal amounts of methionine and lysine. Cows entering their second parity who were fed the elevated MP diet produced two liters more colostrum than second parity cows fed the control MP diet. This effect was not observed in cows entering their third or higher parity. Overall, higher MP supply did not impact colostrum quantity or quality. Dr. Westhoff also highlights an invited review he authored regarding nutritional and management factors that influence colostrum production and composition. The MP research has also been published; links to both are below.

    MP paper: https://www.sciencedirect.com/science/article/pii/S0022030224010774

    Invited review: https://www.sciencedirect.com/science/article/pii/S0022030224000341

    Colostrum—More than Immunoglobulin G (IgG): Colostrum Components and Effects on the Calf

    Guest: Dr. Sabine Mann, Cornell University (41:23)

    Dr. Mann presented this abstract at an ADSA symposium titled “Colostrum: The Role It Plays In Calf Health, Development, and Future Productivity.” Her focus was to give credit to the importance of IgG while reminding the symposium audience of the importance of other colostrum components like bioactive factors and nutrients. There is potential that measuring IgG could be a marker for all the other colostrum components that have been transferred as well. We have excellent and cost-effective ways to measure IgG calf-side, but very few bioactive factors can be measured as easily. Heat treatment of colostrum to control bacterial contamination has a detrimental effect on many of the non-IgG components of colostrum. More data is needed to learn how impactful this may be to the calf. Dr. Mann details parts of the heat treatment process that farmers can check to make sure heat treatment is having as little impact as possible. She also would like to have a way to measure the antimicrobial activity of colostrum and the concentrations of insulin and IGF-1 in colostrum on-farm. Lastly, she reminds the audience that we can focus a lot on making the best quality colostrum via transition cow management and best management practices for colostrum harvest, but we still need to get it into the calf. Colostrum must get into calves cleanly and safely, at an adequate amount, and at an optimal temperature.

    Please subscribe and share with your industry friends to invite more people to join us at the Real Science Exchange virtual pub table.

    If you want one of our Real Science Exchange t-shirts, screenshot your rating, review, or subscription, and email a picture to anh.marketing@balchem.com. Include your size and mailing address, and we’ll mail you a shirt.

    Show more Show less
    1 hr and 1 min

What listeners say about Real Science Exchange

Average customer ratings

Reviews - Please select the tabs below to change the source of reviews.