Humans of Martech Podcast Por Phil Gamache arte de portada

Humans of Martech

Humans of Martech

De: Phil Gamache
Escúchala gratis

Acerca de esta escucha

Future-proofing the humans behind the tech. Follow Phil Gamache and Darrell Alfonso on their mission to help future-proof the humans behind the tech and have successful careers in the constantly expanding universe of martech.©2024 Humans of Martech Inc. Economía Exito Profesional Marketing Marketing y Ventas
Episodios
  • 177: Chris O’Neill: GrowthLoop CEO on how AI agent swarms and reinforcement learning boost velocity
    Jul 8 2025
    What’s up everyone, today we have the pleasure of sitting down with Chris O'Neill, CEO at GrowthLoop. Summary: Chris explains how leading marketing teams are deploying swarms of AI agents to automate campaign workflows with speed and precision. By assigning agents to tasks like segmentation, testing, and feedback collection, marketers build fast-moving loops that adapt in real time. Chris also breaks down how reinforcement learning helps avoid a sea of sameness by letting campaigns evolve mid-flight based on live data. To support velocity without sacrificing control, top teams are running red team drills, assigning clear data ownership, and introducing internal AI regulation roles that manage risk while unlocking scale.The 2025 AI and Marketing Performance IndexThe 2025 AI and Marketing Performance Index that GrowthLoop put together is excellent, we’re honored to have gotten our hands on it before it went live and getting to unpack that with Chris in this episode. The report answers timely questions a lot of teams are are wrestling with:Are top performers ahead of the AI curve or just focused on solid foundations? Are top performers focused on speed and quantity or does quality still win in a sea of sameness?We’ve chatted with plenty of folks that are betting on patience and polish. But GrowthLoop’s data shows the opposite.🤖🏃 Top performerming marketing teams are already scaling with AI and their focus on speed is driving growth. For some, this might be a wake-up call. But for others, it’s confirmation and might seem obvious: Teams that are using AI and working fast are growing faster. We all get the why. But the big mystery is the how. So let’s dig into the how teams can implement AI to grow faster and how to prepare marketers and marketing ops folks for the next 5 years.Reframing AI in Marketing Around Outcomes and VelocityMarketing teams love speed. AI vendors promise it. Founders crave it. The problem is most people chasing speed have no idea where they’re going. Chris prefers velocity. Velocity means you are moving fast in a defined direction. That requires clarity. Not hype. Not generic goals. Clarity.AI belongs in your toolkit once you know exactly which metric needs to move. Chris puts it plainly: revenue, lifetime value, or cost. Pick one. Write it down. Then explain how AI helps you get there. Not in vague marketing terms. In business terms. If you cannot describe the outcome in a sentence your CFO would nod at, you are wasting everyone’s time.“Being able to articulate with precision how AI is going to drive and improve your profit and loss statement, that’s where it starts.”Too many teams start with tools. They get caught up in features and launch pilots with no destination. Chris sees this constantly. The projects that actually work begin with a clearly defined business problem. Only after that do they start choosing systems that will accelerate execution. AI helps when it fits into a system that already knows where it’s going.Velocity also forces prioritization. If your AI project can't show directional impact on a core business metric, it does not deserve resources. That way you can protect your time, your budget, and your credibility. Chris doesn’t get excited by experiments. He gets excited when someone shows him how AI will raise net revenue by half a percent this quarter. That’s the work.Key takeaway: Start with a business problem. Choose one outcome: revenue, lifetime value, or cost reduction. Define how AI contributes to that outcome in concrete terms. Use speed only when you know the direction. That way you can build systems that deliver velocity, not chaos.How to Use Agentic AI for Marketing Campaign ExecutionMany marketing teams still rely on AI to summarize campaign data, but stop there. They generate charts, read the output, and then return to the same manual workflows they have used for years. Chris sees this pattern everywhere. Teams label themselves as “data-driven,” while depending on outdated methods like list pulls, rigid segmentation, and one-off blasts that treat everyone in the same group the same way.Chris calls this “waterfall marketing.” A marketer decides on a goal like improving retention or increasing lifetime value. Then they wait in line for the data team to write SQL, generate lists, and pass it back. That process often takes days or weeks, and the result is usually too narrow or too broad. The entire workflow is slow, disconnected, and full of friction.Teams that are ahead have moved to agent-based execution. These systems no longer depend on one-off requests or isolated tools. AI agents access a shared semantic layer, interpret past outcomes, and suggest actions that align with business goals. These actions include:Identifying the best-fit audience based on past conversionsSuggesting campaign timing and sequencingLaunching experiments automaticallyFeeding all results back into a single data source“You don’t wait ...
    Más Menos
    58 m
  • 176: Rajeev Nair: Causal AI and a unified measurement framework
    Jul 1 2025
    What’s up everyone, today we have the pleasure of sitting down with Rajeev Nair, Co-Founder and Chief Product Officer at Lifesight. Summary: Rajeev believes measurement only works when it’s unified or multi-modal, a stack that blends multi-touch attribution, incrementality, media mix modeling and causal AI, each used for the decision it fits. At Lifesight, that means using causal machine learning to surface hidden experiments in messy historical data and designing geo tests that reveal what actually drives lift. Attribution alone can’t tell you what changed outcomes. Rajeev’s team moved past dashboards and built a system that focuses on clarity, not correlation. Attribution handles daily tweaks. MMM guides long-term planning. Experiments validate what’s real. Each tool plays a role, but none can stand alone.About RajeevRajeev Nair is the Co-Founder and Chief Product Officer at Lifesight, where he’s spent the last several years shaping how modern marketers measure impact. Before that, he led product at Moda and served as a business intelligence analyst at Ebizu. He began his career as a technical business analyst at Infosys, building a foundation in data and systems thinking that still drives his work today.Digital Astrology and the Attribution IllusionLifesight started by building traditional attribution tools focused on tracking user journeys and distributing credit across touchpoints using ID graphs. The goal was to help brands understand which interactions influenced conversions. But Rajeev and his team quickly realized that attribution alone didn’t answer the core question their customers kept asking: what actually drove incremental revenue? In response, they shifted gears around 2019, moving toward incrementality testing. They began with exposed versus synthetic control groups, then evolved to more scalable, identity-agnostic methods like geo testing. This pivot marked a fundamental change in their product philosophy; from mapping behavior to measuring causal impact.Rajeeve shares his thoughts on multi-touch attribution and the evolution of the space.The Dilution of The Term AttributionAttribution has been hijacked by tracking. Rajeev points straight at the rot. What used to be a way to understand which actions actually led to a customer buying something has become little more than a digital breadcrumb trail. Marketers keep calling it attribution, but what they're really doing is surveillance. They're collecting events and assigning credit based on who touched what ad and when, even if none of it actually changed the buyer’s mind.The biggest failure here is causality. Rajeev is clear about this. Attribution is supposed to tell you what caused an outcome. Not what appeared next to it. Not what someone happened to click on right before. Actual cause and effect. Instead, we get dashboards full of correlation dressed up as insight. You might see a spike in conversions and assume it was the retargeting campaign, but you’re building castles on sand if you can’t prove causality.Then comes the complexity problem. Today’s marketing stack is a jungle. You have:Paid ads across five different platformsOrganic contentDiscountsSeasonal shiftsPricing changesProduct updatesAll these things impact results, but most attribution models treat them like isolated variables. They don’t ask, “What moved the needle more than it would’ve moved otherwise?” They ask, “Who touched the user last before they bought?” That’s not measurement. That’s astrology for marketers.“Attribution, in today’s marketing context, has just come to mean tracking. The word itself has been diluted.”Multi-touch attribution doesn’t save you either. It distributes credit differently, but it’s still built on flawed data and weak assumptions. If you’re measuring everything and understanding nothing, you’re just spending more money to stay confused. Real marketing optimization requires incrementality analysis, not just a prettier funnel chart.To Measure What Caused a Sale, You Need ExperimentsEven with perfect data, attribution keeps lying. Rajeev learned that the hard way. His team chased the attribution grail by building identity graphs so detailed they could probably tell you what toothpaste a customer used. They stitched together first-party and third-party data, mapped the full user journey, and connected every touchpoint from TikTok to in-store checkout. Then they ran the numbers. What came back wasn’t insight. It was statistical noise.Every marketing team that has sunk months into journey mapping has hit the same wall. At the bottom of the funnel, conversion paths light up like a Christmas tree. Retargeting ads, last-clicked emails, discount codes, they all scream high correlation with purchase. The logic feels airtight until you realize it's just recency bias with a data export. These touchpoints show up because they’re close to conversion. That doesn’t mean they caused it.“Causality is...
    Más Menos
    1 h y 9 m
  • 175: Hope Barrett: SoundCloud’s Martech Leader reflects on their huge messaging platform migration and structuring martech like a product
    Jun 24 2025
    What’s up everyone, today we have the pleasure of sitting down with Hope Barrett, Sr Director of Product Management, Martech at SoundCloud. Summary: In twelve weeks, Hope led a full messaging stack rebuild with just three people. They cut 200 legacy campaigns down to what mattered, partnered with MoEngage for execution, and shifted messaging into the product org. Now, SoundCloud ships notifications like features that are part of a core product. Governance is clean, data runs through BigQuery, and audiences sync everywhere. The migration was wild and fast, but incredibly meticulous and the ultimate gain was making the whole system make sense again.About HopeHope Barrett has spent the last two decades building the machinery that makes modern marketing work, long before most companies even had names for the roles she was defining. As Senior Director of Product Management for Martech at SoundCloud, she leads the overhaul of their martech stack, making every tool in the chain pull its weight toward growth. She directs both the performance marketing and marketing analytics teams, ensuring the data is not just collected but used with precision to attract fans and artists at the right cost.Before SoundCloud, she spent over six years at CNN scaling their newsletter program into a real asset, not just a vanity list. She laid the groundwork for data governance, built SEO strategies that actually stuck, and made sure editorial, ad sales, and business development all had the same map of who their readers were. Her career also includes time in consulting, digital analytics agencies, and leadership roles at companies like AT&T, Patch, and McMaster-Carr. Across all of them, she has combined technical fluency with sharp business instincts.SoundCloud’s Big Messaging Platform Migration and What it Taught Them About Future-Proofing Martech: Diagnosing Broken Martech Starts With Asking Better QuestionsHope stepped into SoundCloud expecting to answer a tactical question: what could replace Nielsen’s multi-touch attribution? That was the assignment. Attribution was being deprecated. Pick something better. What she found was a tangle of infrastructure issues that had very little to do with attribution and everything to do with operational blind spots. Messages were going out, campaigns were triggering, but no one could say how many or to whom with any confidence. The data looked complete until you tried to use it for decision-making.The core problem wasn’t a single tool. It was a decade of deferred maintenance. The customer engagement platform dated back to 2016. It had been implemented when the vendor’s roadmap was still theoretical, so SoundCloud had built their own infrastructure around it. That included external frequency caps, one-off delivery logic, and measurement layers that sat outside the platform. The platform said it sent X messages, but downstream systems had other opinions. Hope quickly saw the pattern: legacy tooling buried under compensatory systems no one wanted to admit existed.That initial audit kicked off a full system teardown. The MMP wasn’t viable anymore. Google Analytics was still on Universal. Even the question that brought her in—how to replace MTA—had no great answer. Every path forward required removing layers of guesswork that had been quietly accepted as normal. It was less about choosing new tools and more about restoring the ability to ask direct questions and get direct answers. How many users received a message? What triggered it? Did we actually measure impact or just guess at attribution?“I came in to answer one question and left rebuilding half the stack. You start with attribution and suddenly you're gut-checking everything else.”Hope had done this before. At CNN, she had run full vendor evaluations, owned platform migrations, and managed post-rollout adoption. She knew what bloated systems looked like. She also knew they never fix themselves. Every extra workaround comes with a quiet cost: more dependencies, more tribal knowledge, more reasons to avoid change. Once the platforms can’t deliver reliable numbers and every fix depends on asking someone who left last year, you’re past the point of iteration. You’re in rebuild territory.Key takeaway: If your team can't trace where a number comes from, the stack isn’t helping you operate. It’s hiding decisions behind legacy duct tape. Fixing that starts with hard questions. Ask what systems your data passes through, which rules live outside the platform, and how long it’s been since anyone challenged the architecture. Clarity doesn’t come from adding more tools. It comes from stripping complexity until the answers make sense again.Why Legacy Messaging Platforms Quietly Break Your Customer ExperienceHope realized SoundCloud’s customer messaging setup was broken the moment she couldn’t get a straight answer to a basic question: how many messages had been sent? The platform could produce a number, but it was ...
    Más Menos
    1 h y 3 m
Todavía no hay opiniones