• #129 Bayesian Deep Learning & AI for Science with Vincent Fortuin

  • Apr 2 2025
  • Duración: 1 h y 3 m
  • Podcast

#129 Bayesian Deep Learning & AI for Science with Vincent Fortuin

  • Resumen

  • Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!

    • Intro to Bayes Course (first 2 lessons free)
    • Advanced Regression Course (first 2 lessons free)

    Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!

    Visit our Patreon page to unlock exclusive Bayesian swag ;)

    Takeaways:

    • The hype around AI in science often fails to deliver practical results.
    • Bayesian deep learning combines the strengths of deep learning and Bayesian statistics.
    • Fine-tuning LLMs with Bayesian methods improves prediction calibration.
    • There is no single dominant library for Bayesian deep learning yet.
    • Real-world applications of Bayesian deep learning exist in various fields.
    • Prior knowledge is crucial for the effectiveness of Bayesian deep learning.
    • Data efficiency in AI can be enhanced by incorporating prior knowledge.
    • Generative AI and Bayesian deep learning can inform each other.
    • The complexity of a problem influences the choice between Bayesian and traditional deep learning.
    • Meta-learning enhances the efficiency of Bayesian models.
    • PAC-Bayesian theory merges Bayesian and frequentist ideas.
    • Laplace inference offers a cost-effective approximation.
    • Subspace inference can optimize parameter efficiency.
    • Bayesian deep learning is crucial for reliable predictions.
    • Effective communication of uncertainty is essential.
    • Realistic benchmarks are needed for Bayesian methods
    • Collaboration and communication in the AI community are vital.

    Chapters:

    00:00 Introduction to Bayesian Deep Learning

    06:12 Vincent's Journey into Machine Learning

    12:42 Defining Bayesian Deep Learning

    17:23 Current Landscape of Bayesian Libraries

    22:02 Real-World Applications of Bayesian Deep Learning

    24:29 When to Use Bayesian Deep Learning

    29:36 Data Efficient AI and Generative Modeling

    31:59 Exploring Generative AI and Meta-Learning

    34:19 Understanding Bayesian Deep Learning and Prior Knowledge

    39:01 Algorithms for Bayesian Deep Learning Models

    43:25 Advancements in Efficient Inference Techniques

    49:35 The Future of AI Models and Reliability

    52:47 Advice for Aspiring Researchers in AI

    56:06 Future Projects and Research Directions

    Thank you to my Patrons for making this episode possible!

    Yusuke Saito, Avi Bryant, Ero Carrera, Giuliano Cruz, Tim Gasser, James Wade,...

    Más Menos
adbl_web_global_use_to_activate_webcro768_stickypopup

Lo que los oyentes dicen sobre #129 Bayesian Deep Learning & AI for Science with Vincent Fortuin

Calificaciones medias de los clientes

Reseñas - Selecciona las pestañas a continuación para cambiar el origen de las reseñas.