The Uptime Wind Energy Podcast Podcast Por Allen Hall Rosemary Barnes Joel Saxum & Phil Totaro arte de portada

The Uptime Wind Energy Podcast

The Uptime Wind Energy Podcast

De: Allen Hall Rosemary Barnes Joel Saxum & Phil Totaro
Escúchala gratis

Acerca de esta escucha

Uptime is a renewable energy podcast focused on wind energy and energy storage technologies. Experts Allen Hall, Rosemary Barnes, Joel Saxum and Phil Totaro break down the latest research, tech, and policy.Copyright 2024, Weather Guard Lightning Tech Ciencia Ciencias Biológicas Ciencias Geológicas
Episodios
  • Why Two-Piece Blades Create Massive Engineering Problems
    Jun 17 2025
    Register for the next SkySpecs Webinar! We discuss China's new 20MW floating turbine by CRRC, and Nordex's patent application for modular blade assembly. Plus HeliService USA's offshore ambulance service and the recent construction delays at Atlantic Shores and Vineyard Wind. Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard's StrikeTape Wind Turbine LPS retrofit. Follow the show on Facebook, YouTube, Twitter, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes' YouTube channel here. Have a question we can answer on the show? Email us! Allen Hall: Our next SkySpecs webinar, if you missed the last one, about lightning protection and how to use SkySpecs, drone imaging and data, and the EOLOGIX-PING Lightning sensor to help yourself on the lightning side. You can actually watch that on the SkySpecs. Just go to SkySpecs and you can see that webinar. It's free. All this stuff is free. It's all great stuff. All you need to do is register. You can get all this information. The next one is coming up on June 25th, 11:00 AM Eastern Time. And this next, webinar is gonna have Liam McGrath from RWE, who's a blade engineer there, and Tom Brady from SkySpecs, who handles all the cool drone technologies. So if you haven't met Tom, you need to go to this webinar and find out what's going on. And Michael McQueenie from SkySpecs. It's the rule. Subject is when should you be scheduling your drone inspections and you shouldn't be doing it in the spring. That's really important. If you wanna save some money on your operational aspects, your [00:01:00] o and m budget, you need to be thinking about how to get your inspections done, when to get your inspections done, and what tools are available to you at different times a year. So there's optimal times to get your drones inspected and there's suboptimal times. Suboptimal times is like March. Don't do it, then do it the previous fall. and so Joel will be there. I will be there. Don't miss it. It is June 25th. 11:00 AM and you can sign up in the show notes below. Speaker 2: You're listening to the Uptime Wind Energy Podcast, brought to you by build turbines.com. Learn, train, and be a part of the Clean Energy Revolution. Visit build turbines.com today. Now, here's your hosts. Alan Hall, Joel Saxon, Phil Totaro, and Rosemary Barnes. Allen Hall: Welcome to the Uptime Wind Energy Podcast. I have Joel Saxo along and Rosemary Barnes from Australia and I've. Just been digging through all the news over the last several days. Really disappointing news to the United States, but over [00:02:00] in China. TRRC has unveiled a 20 megawatt floating wind turbine, and it's, has a rotor diameter of 260 meters, which is not really outrageous. The CRRC press release, which is a little outrageous, let, me read you some of this, and it's called The Key Hung. wind turbine, the key Hung, integrates multiple innovative control technologies offering four core advantages. High intelligence system, modularization, full chain collaboration. And Joel, don't we all want that? And exceptional stability. It incorporates various intelligent controls, sensing and detection technologies that design further enhances the unit's flexibility and efficiency by modularizing key system interfaces and structural components. So there are a lot of words in this press release, but they don't say, actually say anything at all. So that's why we have Rosemary here to suss Joel Saxum: out. Allen Hall: What is happening with CRRC and a [00:03:00] 20 megawatt floating turbine? Is it really needed, Rosemary? Rosemary Barnes: Yeah, I think I've made my thoughts clear about the, like bigger, kind of pursuit of, offshore wind turbines. And I think that a lot of it is about prestige to be the, first with the biggest. and so I guess that this is the,
    Más Menos
    31 m
  • Australia 943 MW Project, Bermuda Offshore Plans
    Jun 16 2025
    Australia has approved the 943 MW Valley of the Winds Wind Farm, Bermuda plans to install an offshore wind farm with 17 turbines by 2027, and Nova Scotia proposes an ambitious $10 billion offshore wind project. Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard's StrikeTape Wind Turbine LPS retrofit. Follow the show on Facebook, YouTube, Twitter, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes' YouTube channel here. Have a question we can answer on the show? Email us! Australia has given the green light to a massive wind project. The Independent Planning Commission in New South Wales has approved ACEN Australia's nine hundred forty-three megawatt Valley of the Winds wind farm. The project also includes a three hundred twenty megawatt battery storage system. The project will create up to four hundred construction jobs and fifty permanent positions. The investment is approximately one point six eight billion Australian dollars. The island nation of Bermuda is making the most of its windy weather. Officials unveiled plans for an offshore wind farm starting with seventeen turbines by twenty twenty-seven. The project aims to help Bermuda reach its twenty thirty-five goal of eighty-five percent renewable energy. The project will begin with a sixty megawatt installation near the north shore. Officials hope to scale up to one hundred twenty megawatts total. Nigel Burgess, head of regulation at Regulatory Authority Bermuda, calls offshore wind a compelling opportunity. The project will lower exposure to fuel price shocks and create space for long-term investment. Currently, Bermuda gets one hundred percent of its power from fuel burning. The project aims to promote energy independence by reducing dependence on imported fuels. The wind farm is expected to be operational by twenty thirty. Nova Scotia has announced an ambitious offshore wind project that could cost up to ten billion dollars. Premier Tim Houston wants to license enough offshore turbines over the next ten years to produce forty gigawatts of electricity. That's eight times more than originally planned. To put this in perspective, Nova Scotia with just over one million people requires only two point four gigawatts at peak demand. China's offshore wind turbines were producing just under forty-two gigawatts as of last year. The project would require hundreds of wind turbines built in water about one hundred meters deep, about twenty-five kilometers offshore. Experts say the project would actually need more than four thousand offshore turbines using current fifteen megawatt turbines. The transmission line alone is estimated to cost between five billion and ten billion dollars to connect the wind farms with the rest of the country. The premier calls it a concept to capture the imagination of Nova Scotians. He wants federal help to cover costs, saying the excess electricity could supply twenty-seven percent of Canada's total demand.
    Más Menos
    3 m
  • MotorDoc’s Electrical Signature Turbine Diagnosis
    Jun 12 2025
    Howard Penrose from MotorDoc discusses their electrical signature monitoring for wind turbines that offers precise diagnostics, enabling cost-effective preventative maintenance and lifetime extension. Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard's StrikeTape Wind Turbine LPS retrofit. Follow the show on Facebook, YouTube, Twitter, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes' YouTube channel here. Have a question we can answer on the show? Email us! Welcome to Uptime Spotlight, shining Light on Wind. Energy's brightest innovators. This is the Progress Powering tomorrow. Allen Hall: Howard, welcome back to the show. Thank you. Well, we've been traveling a, a good deal and talking to a lot of operators in the United States and in Europe, and even in Australia. And, uh, your name comes up quite a bit because we talk to all the technical people in the world and we see a lot of things. And I get asked quite a bit, what is the coolest technology that I don't know about? And I say, Howard Penrose MotorDoc. And they say, who? And I say, well, wait a minute. If you want something super powerful to learn about your turbine, that is easy to implement and has been vetted and has years of in-service testing and verification. It is MotorDock, it is [00:01:00] empower for motors, it is empath for systems and vibration and all the other things. And now empath, CMS, which is a continuous monitoring system that you're offering that those systems are revolutionary and I don't use that word a lot in wind. It's revolutionary in wind and. Let, let me just back up a little bit because I, I want to explain what some of these problems are that we're seeing in the field and, and what your systems do. But there's a, the, the core to what your technology is, is that you're using the air gap between the rotor and the stator and the generator to monitor what's happening inside the turbine. Very precisely. Can you just provide a little insight like how that magic happens? Howard Penrose: Okay. It's, it's basically, we use it as an, as a basic accelerometer. So, um, the side to side movement of the, of the rotor inside the air gap. Um. I could get very technical and use the word [00:02:00] inverse square law, but basically in the magnetic field I've got side to side movement. Plus every defect in the powertrain, um, causes either blips or hesitations in the rotation. Basically, the torque of the machine, which is also picked up in the air gap, and from a physics standpoint. The air gap, the magnetic field, can't tell the difference. And, um, both voltage and current see that as small ripples in the wave form, and then we just pull that data out. So, um, uh, I, I liken it exactly as vibration. Just a different approach, Allen Hall: right? And that that vibration turns into little ripples. And then I'm gonna talk electrical engineering, just for a brief moment, everybody. We're taking it from the time domain to the frequency domain. We're doing a four a transform. And in that four a transform, you can see these spikes that occur at, uh, known locations that correlate back to what the machine is doing Howard Penrose: exactly. [00:03:00] They're they're exact calculations, uh, down to the hundred or even thousandths of a hertz. Uh, so, uh, when we, when we do the measurements, they come up as side bands around, uh, whatever. The, the, uh, signature is, so the amplitude modulation, it's an amplitude modulated signal. So I have, uh, basically the ripple show up on the positive side of the waveform and on the negative side of the waveform. So around everything, I just have plus and minus line frequency. That's, that's basically the primary difference. Then we just convert it over to decibels, which makes it, um, relational to the load,
    Más Menos
    25 m
adbl_web_global_use_to_activate_webcro805_stickypopup
Todavía no hay opiniones