Episodios

  • Will We Ever Prove String Theory?
    May 29 2025

    For decades, string theory has been hailed as the leading candidate for the theory of everything in our universe. Yet despite its mathematical elegance, the theory still lacks empirical evidence.

    One of its most intriguing, yet vexing, implications is that if all matter and forces are composed of vibrations of tiny strands of energy, then this allows for a vast landscape of possible universes with different physical properties, varieties of particles and complex spacetimes. How, then, can we possibly pinpoint our own universe within a field of almost infinite possibilities?

    Since 2005, Cumrun Vafa(opens a new tab) at MIT has been working to weed out this crowded landscape by identifying which hypothetical universes lie in a ‘swampland’ with properties inconsistent with the world we observe. In this episode of The Joy of Why, Vafa talks to co-host Janna Levin about the current state of string theory, why there are no more than 11 dimensions, how his swampland concept got an unexpected lift from the BICEP array, and how close we may be to testable predictions.

    Más Menos
    49 m
  • How Did Geometry Create Modern Physics?
    May 15 2025

    Geometry is one of the oldest disciplines in human history, yet the worlds it can describe extend far beyond its original use. What began thousands of years ago as a way to measure land and build pyramids was given rigor by Euclid in ancient Greece, became applied to curves and surfaces in the 19th century, and eventually helped Einstein understand the universe.

    Yang-Hui He sees geometry as a unifying language for modern physics, a mutual exchange in which each discipline can influence and shape the other. In the latest episode of The Joy of Why, He tells co-host Steven Strogatz how geometry evolved from its practical roots in ancient civilizations to its influence in the theory of general relativity and string theory — and speculates how AI could further revolutionize the field. They also discuss the tension between formal, rigorous mathematics and intuition-driven insight, and why there are two types of mathematicians — “birds” who have a broad overview of ideas from above, and “hedgehogs” who dig deep on one particular idea.

    Más Menos
    46 m
  • Will AI Ever Understand Language Like Humans?
    May 1 2025

    Large language models (LLMs) are becoming increasingly more impressive at creating human-like text and answering questions, but whether they can understand the meaning of the words they generate is a hotly debated issue. A big challenge is that LLMs are black boxes; they can make predictions and decisions on the order of words, but they cannot communicate the reasons for doing so.

    Ellie Pavlick at Brown University is building models that could help understand how LLMs process language compared with humans. In this episode of The Joy of Why, Pavlick discusses what we know and don’t know about LLM language processing, how their processes differ from humans, and how understanding LLMs better could also help us better appreciate our own capacity for knowledge and creativity.

    Más Menos
    41 m
  • Can Quantum Gravity Be Created in the Lab?
    Apr 17 2025

    Quantum gravity is one of the biggest unresolved and challenging problems in physics, as it seeks to reconcile quantum mechanics, which governs the microscopic world, and general relativity, which describes the macroscopic world of gravity and space-time.

    Efforts to understand quantum gravity have been focused almost entirely at the theoretical level, but Monika Schleier-Smith at Stanford University has been exploring a novel experimental approach — trying to create quantum gravity from scratch. Using laser-cooled clouds of atoms, she is testing the idea that gravity might be an emergent phenomenon arising from quantum entanglement.

    In this episode of the Joy of Why podcast, Schleier-Smith discusses the thinking behind what she admits is a high-risk, high-reward approach, and how her experiments could provide important insights about entanglement and quantum mechanical systems even if the end goal of simulating quantum gravity is never achieved.

    Más Menos
    43 m
  • What Is the True Promise of Quantum Computing?
    Apr 3 2025

    Quantum computing promises unprecedented speed, but in practice, it’s proven remarkably difficult to find important questions that quantum machines can solve faster than classical ones. One of the most notable demonstrations of this came from Ewin Tang, who rose to prominence in the field as a teenager. When quantum algorithms had in principle cracked the so-called recommendation problem, Tang designed classical algorithms that could match them.

    So began the approach of “dequantizing,” in which computer scientists look at quantum algorithms and try to achieve the same speeds with classical counterparts. To understand the ongoing contest between classical and quantum computing, co-host Janna Levin spoke to Tang on The Joy of Why podcast. The wide-ranging conversation covered what it was like for Tang to challenge the prevailing wisdom at such a young age, the role of failure in scientific progress, and whether quantum computing will ultimately fulfill its grand ambitions.

    Más Menos
    39 m
  • How Did Multicellular Life Evolve?
    Mar 20 2025

    At first, life on Earth was simple. Cells existed, functioned and reproduced as free-living individuals. But then, something remarkable happened. Some cells joined forces, working together instead of being alone. This transition, known as multicellularity, was a pivotal event in the history of life on Earth. Multicellularity enabled greater biological complexity, which sparked an extraordinary diversity of organisms and structures.

    How life evolved from unicellular to multicellular organisms remains a mystery, though evidence indicates that this may have occurred multiple times independently. To understand what could have happened, Will Ratcliff at Georgia Tech has been conducting long-term evolution experiments on yeast in which multicellularity develops and emerges spontaneously.

    In this episode of The Joy of Why podcast, Ratcliff discusses what his “snowflake yeast” model could reveal about the origins of multicellularity, the surprising discoveries his team has made, and how he responds to skeptics who question his approach.

    Más Menos
    46 m
  • New Conversations, Deep Questions, Bold Ideas in Season Four of 'The Joy of Why'
    Mar 13 2025

    How did complex life evolve? Where did space-time come from? Will computers ever understand language like we do? How did geometry create modern physics? These are just a few of the big and bold questions that we’ll be exploring in the latest season of Quanta’s interview podcast, “The Joy of Why,” starting March 20, and released every other Thursday.

    Más Menos
    18 m
  • How Will We Know We're Not Alone?
    Dec 19 2024

    We have identified thousands of planets just in our neighborhood in the Milky Way, mostly from the way they impact their host stars. Basic calculations suggest that there are countless more across the galaxy, and that billions of them could potentially support life. But what kind of life they host, and how we would be able to detect the presence of those biological processes from Earth, remain big questions in the world of exoplanets and astrobiology. What technologies might lie ahead to help us answer the question of whether we are alone in the universe? Lisa Kaltenegger, an astrophysicist and astrobiologist at Cornell University, talks to Janna Levin about that search, the atmospheric fingerprints of life, and why an advanced alien civilization might decide not to talk to us.

    Más Menos
    38 m
adbl_web_global_use_to_activate_T1_webcro805_stickypopup