Machine Learning Audiolibro Por Michael Brenner arte de portada

Machine Learning

The Ultimate Guide to Understanding Machine Learning, Deep Learning and Neural Networks; What You Need to Know About Data Analytics and Big Data

Vista previa

Prueba por $0.00
Prime logotipo Exclusivo para miembros Prime: ¿Nuevo en Audible? Obtén 2 audiolibros gratis con tu prueba.
Elige 1 audiolibro al mes de nuestra inigualable colección.
Escucha todo lo que quieras de entre miles de audiolibros, Originals y podcasts incluidos.
Accede a ofertas y descuentos exclusivos.
Premium Plus se renueva automáticamente por $14.95 al mes después de 30 días. Cancela en cualquier momento.

Machine Learning

De: Michael Brenner
Narrado por: Charles Walter
Prueba por $0.00

$14.95 al mes después de 30 días. Cancela en cualquier momento.

Compra ahora por $19.95

Compra ahora por $19.95

Confirma la compra
la tarjeta con terminación
Al confirmar tu compra, aceptas las Condiciones de Uso de Audible y el Aviso de Privacidad de Amazon. Impuestos a cobrar según aplique.
Cancelar

Acerca de esta escucha

Machine Learning is now an essential component of many industrial uses and studies, but this field isn't exclusive to large businesses with extensive research crews.

In case you are using Python, whilst a newcomer, this audiobook will educate you on practical methods to assemble your Machine Learning solutions. Considering all the current info available now, Machine Learning software is limited only by your imagination.

You will study the steps required to generate a prosperous machine-learning application with Python and the sci-kit-learn library. Author Michael Brenner gives attention to the technical facets of utilizing machine learning algorithms, in place of the mathematics in it. Understanding of the NumPy and also matplotlib libraries can allow you to get more out of that publication.

In this publication, you'll discover:

  • Fundamental theories and applications of Machine Learning
  • Benefits and shortcomings of broadly used Machine Learning algorithms
  • The best way to signify data processed by system learning, such as which information components to focus on
  • Advanced approaches for design analysis and parameter tuning
  • The Idea of pipelines for chaining versions and encapsulating your work flow
  • Techniques for dealing with text information, such as text-specific processing methods

Employing a set of recent discoveries, profound learning has fostered the whole area of Machine Learning. Now, even developers who know near nothing about it tech may use efficient, simple tools to execute programs with the capacity of learning from data. This practical AUDIObook shows you how.

©2020 Michael Brenner (P)2020 Michael Brenner
Programación Aprendizaje automático Ciencia de datos Software Inteligencia artificial Desarrollo de software

Lo que los oyentes dicen sobre Machine Learning

Calificaciones medias de los clientes

Reseñas - Selecciona las pestañas a continuación para cambiar el origen de las reseñas.